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Advances in Stroke
Imaging

Chelsea S. Kidwell, MD; Wolf-Dieter Heiss, MD

Over the past 2 years, there have been substantial ad-
vances in many areas of stroke imaging; in this review,

due to space limitations, we highlight major themes with a
focus on acute stroke as well as vessel imaging. We recognize
that there has been a much larger body of important work
including imaging in animal models, stroke recovery, and
cognitive impairment that we anticipate is covered in other
sections.

In acute ischemic stroke, there continues to be steady
progress toward identifying the best imaging profiles that can
be used to select patients for therapies and/or predict out-
comes. Several studies have continued to highlight the need
for greater consistency and standardized approaches in iden-
tifying perfusion thresholds for tissue viability with both CT
and MRI.1,2 Real-time analyses for postprocessing of multi-
modal imaging data show promise and feasibility,3 but also
potential pitfalls, including overestimation of perfusion
deficits.4

Secondary analyses from the Echoplanar Imaging Throm-
bolytic Evaluation Trial (EPITHET) and Diffusion and Per-
fusion Imaging Evaluation for Understanding Stroke Evolu-
tion (DEFUSE) studies have underscored the importance of
absolute volumes of baseline perfusion and diffusion deficits
(as opposed to the mismatch profile) in predicting outcome
and response to therapy.5 The optimal definition of the
malignant profile (time to maximum �8-second volume
�85–100 mL)6 has also been further refined. The EPITHET
investigators reported the importance of coregistration in
determining mismatch, which led to a positive trial result.7 In
the CT realm, regional specific thresholds for tissue viability
have been identified and will likely be important in refining
future predictive models.8 There continues to be strong
interest in randomized controlled trials using imaging selec-
tion for late recanalization therapies. One nonrandomized,
retrospective analysis of imaging-based selection for endo-
vascular therapy beyond 8 hours demonstrated feasibility.9

Positron emission tomography continues to serve as the
gold standard for determining tissue viability thresholds in
acute stroke and positron emission tomography has become
the method of choice in animal studies with the advance of
microtechniques.10 Arterial spin labeling perfusion MRI sys-

tematically overestimated cerebral blood flow relative to
H2

15O11 and T2*-weighted MRI was not sensitive to high
oxygen extraction fraction, the marker of critical ischemia.12

For the detection of the perfusion-weighted imaging–
diffusion-weighted imaging mismatch as a surrogate of the
penumbra, a reliable definition of a critical flow threshold is
necessary. In comparative studies of perfusion-weighted im-
aging and H2

15O-positron emission tomography, time to
maximum of 5.5 seconds, cerebral blood flow of 21.7 mL/100
g/min, and time to peak of 4.2 seconds correlated best to the
penumbra threshold of 20 mL/100 g/min from positron
emission tomography,13 values similar to those from another
validation study (mean transit time delay 4 seconds, absolute
mean transit time 8 seconds, mean transit time ratio 200%).14

The high interindividual variability of perfusion-weighted
imaging parameters can be improved by scaling to the mean
from the contralateral hemisphere15 and by careful placement
of the area for recording the arterial input function.16

Imaging of the peripheral benzodiazepine receptor, now
referred to as the translocator protein 18 kDa, has attracted
much attention in recent years because it detects activated
microglia, the most important cellular component of post-
stroke neuroinflammation.17 The expression of translocator
protein 18 kDa has been observed both in the infarct core and
the peri-infarct tissue where it might be an indicator for
progressive secondary damage. Similar patterns of microglial
activation in poststroke patients were observed by 11C-
vinpocetine.18 Microglial activation remote from the infarct is
also seen along fiber tracts or in relay nuclei, which might
indicate changes secondary to Wallerian degeneration.19 Dif-
ferential temporal dynamics of local and remote activated
microglia might indicate differences in neuroprotective or
regenerative activity.20 Together with diffusion tensor imag-
ing, microglial activation is a measure of pyramidal tract
damage, which is highly correlated with residual motor
function in acute and chronic stages after stroke.21

There have also been further advances in identifying
imaging markers and profiles predicting hemorrhagic trans-
formation after recanalization therapies. Regional low cere-
bral blood volume may be a better predictor of hemorrhagic
transformation than absolute diffusion-weighted imaging or
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thresholded apparent diffusion coefficient volumes.22 Blood–
brain barrier permeability analyses also continue to show
promise in predicting hemorrhagic transformation.23 An ad-
ditional study of note suggests that evidence of recent, silent
ischemia on acute MRI is frequent and does not increase the
risk of symptomatic hemorrhage with intravenous
thrombolysis.24

A growing number of studies have demonstrated the added
use of imaging, particularly diffusion-weighted imaging, in
prognostic scores (eg, ABCD2/3) for transient ischemic
attack outcome.25 Further studies have continued to demon-
strate the importance of collaterals not only in acute stroke,26

but also in determining stroke risk in patients with intracra-
nial atherosclerosis.27

In the past 2 years, advanced imaging of intracerebral
hemorrhage has led to several important new insights. MRI
studies including diffusion-weighted imaging sequences have
demonstrated that ischemic infarcts remote from the primary
hematoma are common in intracerebral hemorrhage and may
be associated with acute blood pressure-lowering and poor
outcome.28 Further data have emerged on the prevalence, risk
factors for, and clinical significance of microbleeds, includ-
ing their association with increased risk of future stroke and
cognitive decline.29–33

Noteworthy advances continue in vessel imaging. Both
ultrasound techniques34,35 and high-resolution MRI can iden-
tify high-risk plaques.36 A new technique of “vessel size
imaging” has the potential to demonstrate pathological
changes in the microvasculature during ischemia.37 Inflam-
mation in atherosclerotic plaques can be identified by both
[18F]-2-fluoro-2-deoxy-d-glucose positron emission tomog-
raphy and MRI techniques.38 [18F]-2-Fluoro-2-deoxy-d-
glucose selectively detects inflammatory portions of arterio-
sclerotic plaques, which is an indicator of macrophage load,
inflammatory activity, and collagenolytic plaque destabiliza-
tion39 as the source of microemboli and vessel wall inflam-
mation as the cause of spontaneous cervical artery dissec-
tion.40 Intraplaque inflammation can also be imaged with
11C-PK11195, which can distinguish between recently symp-
tomatic and asymptomatic plaques.41 Importantly, vessel
imaging studies are now being used to monitor response to
secondary prevention therapies.42
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